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LIQUID CRYSTALS, 1986, VOL. 1, No. 5, 437-454 

Solute alignment in liquid crystal solvents 

The Saupe ordering matrix for anthracene dissolved 
in uniaxial liquid crystals 

by J. W. EMSLEY, R. HASHIM, G. R. LUCKHURST and G. N. SHILSTONE 
Department of Chemistry, The University, Southampton SO9 5NH, England 

(Received 17 February 1986; accepted 24 June 1986) 

We have described a theory for U(w),  the potential of mean torque of rigid 
solutes at infinite dilution in a uniaxial liquid crystal phase; this may be used to 
calculate (Sxx - S,) and S,,, the principal elements of the Saupe ordering matrix. 
In its simplest form U(o) contains only second-rank terms and the dependence of 
the biaxiality (S.xx - S,) is determined by 1, a parameter which describes the 
departure of the potential of mean torque from cylindrical symmetry, and is 
predicted to be temperature independent. If dispersion forces are responsible for 
the magnitude of the orientational order parameter then I should be independent 
of the solvent and depend only on the anisotropy in the electric polarizability of 
the solute. Indeed, this independence should result for any pair potential which can 
be factorized into a product of solute and solvent properties. These predictions are 
tested here by determining values of S,, and (Sxx - S,) for anthracene-d,, as a 
solute in several liquid crystal solvents, from the quadrupolar splittings obtained 
from the deuteron N.M.R. spectra. It is found that I has a strong dependence on 
the nature of the solvent, which demonstrates that the solute ordering cannot be 
determined primarily by dispersion forces, or by a factorizable potential. There is 
also a weaker temperature dependence of 1 observed for each binary mixture, and 
we show how this might be caused by a dependence of 1 on solvent ordering, or 
by the inclusion of a fourth-rank term in U(o). 

1. Introduction 
The development of a molecular theory for thermotropic liquid crystals is an 

extremely difficult task. Part of this difficulty results undoubtably from the structural 
complexity of the molecules which form liquid crystals. Thus although mesogenic 
compounds, such as the 4-n-alkyl-4’-cyanobiphenyls, are composed of rod-like mol- 
ecules, these are of low symmetry and they are flexible. This complexity has also 
impeded the experimental investigation of the long range orientational order of a 
liquid crystal, which is its prime characteristic. However, in recent years N.M.R. 
spectroscopy in general and deuterium N.M.R. spectroscopy in particular has proved 
to be a uniquely powerful technique for the determination of the orientational order 
parameters of the rigid sub-units in a mesogenic molecule [l]. None the less, the 
complete Saupe ordering matrices for every sub-unit in such a molecule have yet to 
be measured. One solution to this problem is the synthesis of mesogens with simpler 
molecular structures, but the choice of these is limited and even then they are liquid 
crystalline only at high pressures or in a supercooled state at atmospheric pressure [2]. 

An alternative approach is to study the orientational order of a solute dissolved 
in a liquid crystal solvent. This has considerable advantages; for example, the 
solute structure can be chosen to be rigid and with a high degree of symmetry. In 
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438 J. W. Emsley et al. 

consequence the principal elements of the Saupe ordering matrix can be determined 
using a range of techniques which include N.M.R.  spectroscopy [l], optical dichroism 
[3] and E.S.R. spectroscopy for paramagnetic solutes [4]. In addition the same solute 
can be used as a probe to investigate the anisotropic intermolecular interactions in 
different liquid crystal solvents. Alternatively, variations in the structure of the solute 
may be employed to study the possible contributions to the solute-solvent inter- 
actions for a given liquid crystal. Here we report the results obtained from the former 
approach in which the ordering matrix for anthracene-d,, dissolved in a range of 
liquid crystals has been determined using deuterium N.M.R.  spectroscopy. However, 
before we describe and then discuss our results we shall outline the background to the 
measurement of the Saupe ordering matrix and its interpretation at the molecular 
level. 

The ordering matrix is defined by 

where 1, is the direction cosine between the director of a uniaxial liquid crystal and 
an axis a set in the molecule; the bar denotes an ensemble average [5 ] .  There are five 
independent elements of S because the ordering matrix is symmetric and traceless, but 
for molecules with C2u symmetry or higher the principal axes may be identified and 
so this number is reduced to just two. The two independent quantities are best 
expressed as the major element, S,,, and the biaxiality (SIX - S,,) which measures the 
deviation of S from cylindrical symmetry. The principal axes, xyz, are selected so that 
(SI.K - Syy)  is positive and ~ S , , ~  > (S.rx - S,,). The determination of the principal 
components of the ordering matrix therefore requires a technique which is capable of 
yielding at least two independent pieces of information, provided the principal axes 
are defined by the molecular symmetry. Deuterium N.M.R.  spectroscopy of a 
deuteriated solute gives a quadrupdar splitting, A i ,  for each inequivalent deuteron; 
this results directly from the alignment of the solute and is related to the principal 
elements of S by 

Here qua are the diagonal elements of the quadrupolar interaction tensor in the 
principal axis system of the ordering matrix, and we assume that contributions to the 
electric field gradients at each deuteron which stem from the surrounding molecules 
are negligibly small. Equation (2 )  applies to a liquid crystal with a positive anisotropy 
A x  (=  xll - xL)  in the magnetic susceptibility and which is therefore aligned parallel 
to the magnetic field. The equation can be applied to liquid crystals with Ax negative 
by multiplying the observed quadrupolar splittings by - 2, since, for such materials, 
the director is aligned orthogonal to the magnetic field. Provided the solute contains 
at least two deuterons with significantly different principal axes for their quadrupolar 
tensors then it is possible to determine both S,, and (Sxx - Syy) from their quadru- 
polar splittings. 

The measurement of the Saupe ordering matrix is clearly a straightforward task 
for a solute dissolved in a liquid crystal solvent. However if such experiments are to 
allow us to explore the anisotropic intermolecular interactions in liquid crystal 
solutions it is necessary to develop a molecular theory for solute alignment. The 
principal elements of S are related to the potential of mean torque, U(o), governing 
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Solute alignment in liquid crystals 

the solute alignment by 

S,, = Z - '  {(31,2(0) - 1)/2) exp( - U ( w ) / k T }  dw, s 
2 = s exp { - U ( w ) / k T )  dw, 

where Z is the orientational partition function 

(4) 

and o denotes the spherical polar angles made by the director in the principal axis 
system of the solute. One of the earliest attempts to understand solute alignment was 
made by Nehring and Saupe [6] who proposed that, by analogy with the Maier-Saupe 
theory of nematics [7], the potential of mean torque is of the form, 
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(3) 

U ( 0 )  = -(&J; + EJ,2 + &&). ( 5 )  

Subsequently we shall find it convenient to use irreducible spherical tensor notation 
and in this formalism equation (5) becomes 

U(w> = - [ E 2 , 0 C 2 . 0 ( ~ )  + E2,2{C2,2(0) + C2.-2(4}13 (6) 

where C2.,,(w) is a modified spherical harmonic and E ~ . ~  is the irreducible spherical 
tensor form of the Cartesian interaction tensor E,, [S]. 

The second-rank interaction tensor E depends on a variety of factors including 
temperature, the solvent order and the solute concentration. One further advantage 
of N.M.R. spectroscopy is that the solute concentration can be made so small that E 

is determined by solute-solvent interactions alone and does not involve solute-solute 
interactions. Even so the development of expressions for the interaction tensor in the 
potential of mean torque for the solute presents a serious challenge. There have been 
several attempts at this development, each based on the molecular field approxi- 
mation but differing in the symmetries assumed for the solute and the solvent. The 
latest of these developments has been given by Emsley et al. [9]; they have derived a 
general expression for the potential of mean torque for a biaxial solute in a solvent 
of rigid biaxial particles at the infinite dilution limit. According to this theory the 
components of the second-rank interaction tensor are 

Here the solvent ordering tensor C2,,, is expressed in irreducible form; C2,0 is equiva- 
lent to the major order parameter while C,, describes the biaxiality in the Saupe 
ordering matrix for the solvent. 

The averaged coefficients, iiZmn, are related to the anisotropic solute-solvent 
interactions and expressions for them can be derived from a formal expansion of the 
intermolecular pair potential [9]. In such an expansion the distance dependent coef- 
ficients are not necessarily associated with particular intermolecular forces and they 
may contain contributions from several. For the second-rank averaged coefficients 
iiZmn the first subscript denotes the rank of the interaction, the second is a component 
associated with the solvent and the third with the solute. Thus for a uniaxial solvent 
and a biaxial solute only iizo0 and iiZo2 are non-zero, while for uniaxial solute and 
solvent only iizW survives. The relative magnitudes of these interaction coefficients 
depend, inter alia, on the extent of the departure of the particles, both solute and 
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440 J. W. Emsley et al. 

solvent, from cylindrical symmetry. For a typical mesogenic solvent we expect 

Q2, ’ Q220 and Q202 > Q222 (9) 

since the molecules approximate closely to cylindrical symmetry; this need not be the 
case for the solute where the relative magnitudes of QZmO and QZm2 can vary significantly 
with the molecular structure. 

The biaxial order parameter for the solvent is small in comparison with the major 
order parameter; typically C2,2/c2,0 is about 0.05 [l,  101. This, taken together with the 
inequalities in equation (9), allows us to approximate the components of the inter- 
action tensor in equations (7) and (8) by 

and 
E2.0 = - fi200C2,O 

E2,2 = - 2 6 2 0 2 C 2 , O .  

The ratio, I ,  of these coefficients is then given by 

2 = E2,2/2E2,0 ,  

= Q202/Q2M), (12) 

and so is predicted to be independent of the solvent order but not necessarily the 
nature of the solvent since the coefficients themselves are determined by the solute- 
solvent interactions. However if these interactions are dominated by dispersion forces 
then 1 is indeed independent of the solvent. This situation obtains because the 
coefficients are related to the polarizabilities, ctj2-“‘) and of the solvent and solute, 
respectively [I 11 

and so I depends on the solute properties alone 

- 
(13) 

1 = 42,2)/ ,42.0).  (14) 

g a(2,m) ( 2 . 4  
‘4mn = 1 2  I g 2  9 

Indeed I should be independent of the solvent for any molecular interaction which 
may be factorized into a product of solute and solvent properties. 

These predictions have been tested by measuring the Saupe ordering matrix for 
1 ,Cdinitrobenzene dissolved in the mesogens 4,4’-di-n-heptyl-azoxybenzene (HAB), 
Merck Phase 5 which is a mixture of 4,4’-di-n-alkyloxyazoxybenzenes, and E5 which 
is a mixture of 4-n-alkyl-4’-cyanobiphenyls and 4-n-alkyl-4”-cyanoterphenyls [9]. The 
biaxiality parameter 1 was found to exhibit a strong solvent dependence and so clearly 
demonstrated that dispersion forces do not make the dominant contribution to the 
anisotropic solute-solvent interactions and that the pair potential cannot be fac- 
torized as has been supposed [3,12]. In addition I was observed to decrease slightly 
with increasing temperature which is not in accord with the general theory of solute 
alignment. Both of these results might be specific to the particular solute, which 
possesses at least one property not allowed for in the theory. Thus 1 ,Cdinitrobenzene 
is not rigid; the nitro groups must rotate about the para-axis and they may not be 
coplanar with the phenyl ring or even with each other in the ground state conforma- 
tion. The solute is also small in comparison with the liquid crystal solvent and is 
strongly polar; in consequence it may interact specifically with parts of the solvent 
molecule. 

Such specific interactions are not included in the theory and so we have extended 
our studies of solute ordering by using anthracene. This is certainly rigid, it is larger 
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Figure 1. Atomic labelling and location of the symmetry axes for anthracene. The y axis is 
normal to the molecular plane. 

than 1 ,Cdinitrobenzene and is considerably less polar. The choice of anthracene has 
other advantages; its structure (cf. figure 1) has been characterized by X-ray diffrac- 
tion and the quadrupolar interaction tensors for the deuterons in anthracene-d,, have 
been determined from a single crystal study [ 131. Such information is needed when we 
come to extract the principal elements of the Saupe ordering matrix from the observed 
quadrupolar splittings. 

The solvents used in our study are shown in table 1; they represent a range of 
chemical types and, most importantly, have wide mesomorphic ranges which result in 
a large variation in the orientational order of both solvent and solute. Phase 5 and 
HAB were studied with 1,Cdinitrobenzene as solute; E9 is a very similar mixture to 
E5, which was the other solvent used with 1,4-dinitrobenzene. The three additional 
solvents employed with anthracene differ from the others in containing saturated ring 
systems and so may interact with anthracene in a different way to the solvents 
containing purely aromatic cores. 

2. Experimental and spectral analysis 
Anthracene-d,, was obtained from the Aldrich Chemical Company and approxi- 

mately 1 per cent w/w solutions prepared in the six liquid crystal solvents shown in 
table 1. For E9 as solvent we also made measurements on a 0-5 per cent w/w solution 
as a check that the 1 per cent solutions are sufficiently dilute that the variation of 
(Sxx - S,,) with S,, is independent of the solute concentration. The deuteron spectra 
were recorded at 30.7 MHz on a Bruker CXP 200 spectrometer; a typical spectrum is 
shown in figure 2. The outer pair of lines is unambiguously assigned to the deuterons 
at positions 2 , 3 , 6  and 7 on the grounds of their smaller relative intensity. The central 
group of lines originate from the remaining six deuterons and are shown on an 
expanded scale as the middle trace in figure 2. The complex structure on these inner 
bands is caused by dipolar couplings between the deuterons and also because the four 
symmetrically equivalent deuterons at positions 1 ,  4, 5 and 8 have a different quad- 
rupolar splitting from those at positions 9 and 10. A full analysis of the spectrum of 
an oriented sample containing ten interacting deuterons is not practicable. However, 
it was found to be possible to reproduce the spectral envelope with good precision by 
simulating the spectrum as caused by deuterons 1, 2, 7, 8, 9 and 3, 4, 5, 6 10 as two 
identical but non-interacting groups. This result is perhaps surprising since the dipolar 
couplings B,, = are not small. None the less any errors introduced by this 
approximate analysis are certainly not expected to invalidate the main conclusions 
reached on the relative signs and magnitudes of the quadrupolar splittings. The results 
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442 J. W. Emsley et al. 

Table 1. The liquid crystals used as solvents for anthracene. 

Abbreviation Composition Structure 

(1) HAB 4,4‘-di-n-heptylazoxy -a = * A 5  
benzene 

(TcsA = 307 K; 7 15 

TSAN = 326.5K; 0 

T,, = 344.5K) 

(2) Phase 5 Eutectic mixture of: 
4-buty1, 4’-methoxy- R = C,Hg, R’ = OCH, 

4-methoxy, 4’-butyl- 

4-ethyl, 4’methoxy- R = CzH5, R‘ = OCH, 

4-rnethoxy, 4‘-ethyl- 

azoxy benzene 

azoxybenzene 

azoxybenzene 

R = CH,O, R‘ = C,H, 

R = CH,O, R’ = CzH, 
azoxybenzene 

(TcN = 268 K; 
TNI = 348K) 

(3) 14, 3 l-(Ctrans butyl- 
cyclohexyl) 

2-(2’-fluoro, 4’-propyl, 
4-bipheny1)ethane 

(TCN = 297.5K, 
TNl = 376K) 

(4) ZLI 1167 Eutectic mixture of: 
4-trans cyano, 4’-trans 

propyl bicyclohexyl 
4-trans cyano, 4’-trans 

pentyl bicyclohexyl 
4-trans cyano, 4‘-trans 

heptyl bicyclohexyl 
(TcsA = 298 K; 

TSAN = 305K; 
TNI = 356K) 

( 5 )  PCH 7 4-cyano (4’-trans 
hept yl-cyclohexyl) 
benzene 

(TCN = 303K, 
T,, = 330.5K) 

(6) E9 Mixture of: 
15 per cent 4-propy1, 

4’-cyano-biphenyl 
38 per cent 4-penty1, 

4‘-cyano-biphenyl 
38 per cent 4-heptyl, 

4’-cyano-biphenyl 
9 per cent 4-penty1, 4” 

cyano-p-terphen yl 
(TcN = 280 K; 

TNI = 355.5K) 

R = C,H, 

R = C,H,, 

R = C,H,, 

R < I > - O C X  

R = C,H, 

R = C,H,, 

R = C,H,, 

R = C,H,,Ph 
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a a' 

Figure 2. 30.7 MHz N.M.R. spectrum of deuterons in anthracene-d,, dissolved in HAB at 
TNI - T = 23 K. The top trace is the complete spectrum, whilst the middle trace shows 
an expansion of the inner groups of lines. The points a, a' and b, b' give the positions 
from which values of ASl and AS9 may be measured. The bottom trace is a spectrum 
calculated for the deuterons 1, 4, 5, 8, 9 and 10 with the parameters given in table 2. 

Table 2. Dipolar couplings and quadrupolar splitting obtained by analysis of the deuteron 
spectrum of anthracene-d,, dissolved in HAB at TNI - T = 23 K.  

AS, = AS4 = AS, = AS8 - 49 230 HZ 
AS2 = At3 = AS, = AS7 104 000 Hz 
AS9 = AS,, - 48 070 HZ 
d,, = d,, = B,, = d,, - 64 HZ 
'19 = c 8 9  = d4.10 = d5.10 - 105 HZ 
61, = 0 4 5  - 13 HZ 
B,, = = ' , 5  = d,, - 6 H z  

obtained by an iterative analysis of the spectrum of the HAB solution recorded at 
TNI - T = 23K are given in table 2, and the bottom trace in figure 2 shows a 
simulation of the peaks from deuterons 1,4, 5, 8, 9 and 10. This analysis reveals that 
A t ,  can be obtained directly from the separation of peaks a and a' whilst the 
separation of peaks b and b' gives At9,  both to a precision of approximately 50 Hz. 

The spectral envelope from peaks 1,4,5,8 ,  9 and 10 does not change on varying 
either the solvent or the temperature so it was possible to obtain A t l  and A t 9  from 
each spectrum without recourse to an iterative fit. Spectra for each sample were 
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444 J.  W. Emsley et al. 

recorded over a wide temperature range and the results are contained in six tables 
comprising 8 pages which have been deposited with the British Library Lending 
Division; copies of this Supplementary Publication may be obtained from the British 
Library by using the procedure described at  the end of this issue and quoting the 
number SUP 16501. 

The analysis of the dipolar structure shown in figure 2 requires d19 to be the same 
sign as both AG1 and A:,; in addition we can establish the sign of d,, in the following 
way. The dipolar coupling B,,  is given by 

dl9 = - yhhS,,/4nZr:,, (15) 

where yo is the gyromagnetic ratio of the deuteron and rI9 is the internuclear separ- 
ation. At the lowest reduced temperatures I SzJ is observed to be greater than one-half 
and S:, must therefore be positive, making D19, Airl and Air, negative. 

3. Results and discussion 
To obtain the order parameters S,, and (Sxx - S,,) from the quadrupolar split- 

tings with the aid of equation (2) it is necessary to relate q12 and (qxx - qvV) to the 
components of q in its principal frame of reference. The principal axes (abc) of the 
quadrupolar interaction tensor of a deuteron in anthracene are such that to a good 
approximation a lies along the appropriate C-D bond and c is normal to the ring 
plane. These axes are chosen so that lqool > lqccl > l q b b l  and the asymmetry par- 
ameter q = ( q b b  - qcc)/qoa is positive. Thus, for a deuteron at the ith site where the 
C-D bond has direction cosines lLa, l i b ,  1ic with axis c1 (x, y or z )  

Substituting equation (16) into equation (2) and noting that for anthracene both y and 
c are normal to the ring plane we obtain 

A:, = +4~a[S,,{(31~~ - 1)/2 + q’li2/2} + (Sxx - S,,)(l:’, + $ ~ ( / ; i  + 1))/2]. (17) 

The bonds C-D (9) and C-D (10) are necessarily parallel to x so that for these the 
geometrical factors in equation (17) are known with certainty. The bonds to deuterons 
at  position 2 ,3 ,6  and 7 are taken to make an angle of 29.5” to z; this value is obtained 
by assuming that these bond directions bisect the CCC bond angle at  their attached 
carbon atoms, the value of which is available from an X-ray study [14]. To  calculate 
S,, and (Sxx - SYy) from the quadrupolar splittings Ai$ and A?, it is necesary to know 
the values of qaa and q at these positions. We take qoo = 18 1 kHz and 17 = 0.064 which 
are the values found for all deuterons in solid anthracene [12]. We note, however, that 
our spectra show that Air, # Air, which could result because the C-D bonds (or more 
correctly, the principal axes of the quadrupolar tensors) are not parallel, or because 
qsp # 4::); differences in and q(,’ will also contribute to a difference in the 
quadrupolar splittings but this effect is expected to be negligible. We can eliminate the 
geometrical factor as the sole cause of the difference between Air, and Air,; the bond 
C-D(9) must be parallel to x and rotating C-D(l) either towards z or - 2  about y 
serves to decrease lair, I relative to /Air,[, whereas the opposite magnitudes are observed. 
Attributing the difference between A f 1  and Air, (Airl - Air,) entirely to the difference 
in the quadrupolar coupling constants q!p and qs:) gives this as 4.4 L- 0.1 kHz, which 
is reasonable in view of the variations observed in this quantity for different aromatic 
compounds [15]. The inequality in qz.f?‘ and 4::) contrasts with the conclusion drawn by 
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Solute alignment in liquid crystals 445 

Ellis and Bjorkstam [13] from their study on solid anthracene that the q:: are equal 
at all positions in anthracene, however, the large line widths in the deuteron spectra 
of solid anthracene could mask the small difference in splittings which we observe for 
liquid-crystalline solutions with their narrower line widths. The values of qzf? and qz;), 
which we need to extract S,, and (SXx - S,,) from the observed quadrupolar split- 
tings, could also differ by an amount similar to lqz! - qi21. Accordingly in using a 
single value of qaa for positions 2 and 9 we should recognize that this will introduce 
an uncertainty of approximately + 3  per cent into calculations of the order par- 
ameters. We note that this is a systematic error and does not affect the precision with 
which order parameters at different temperatures or in different solvents can be 
compared. The errors arising from the precision in measuring the quadrupolar 
splittings are much smaller; they are 0.5 per cent in S,, and 3 per cent in (Sx, - S,,). 

O a 8  

X 

0.0 ' 
0.7 0.8 0.9 1.0 

T/ TN I 

Figure 3. The variation of the major order parameter S,, with the reduced temperature, 
T/TN,, for anthracene-d,, dissolved in HAB (O), E9 ( x ) ,  PCH 7 (+), ZLI 1167 (A), I 4 , 3  
( * )  and Phase 5 (0). 

In figures 3 and 4 we show the temperature dependences of S, and (Sx, - S,,) for 
anthracene in the six solvents. The magnitude of S,, increases with decreasing reduced 
temperature, TITN,, for all the solvents, as expected. There is an enhancement in S,, 
as the smectic A phase is entered for the solution of anthracene in HAB, which again 
is to be anticipated. There is, however, no obvious correlation between the relative 
magnitudes of S,, for anthracene in different solvents at the same reduced tem- 
perature. For example, HAB and Phase V both have azoxybenzene cores and yet 
anthracene is most ordered in HAB and least in Phase V. However, anthracene is 
similarly ordered in E9 and PCH7 both of which have benzonitrile groups but differ 
in that PCH7 contains a cyclohexyl group. Figure 4 gives the variation of (Sxx - S,) 
with T/TNI ; the observed curves exhibit the increase and then the decrease predicted 
by theory [9, 111 as the reduced temperature is lowered. At all temperatures and in all 
the solvents studied we find I S,,l > I S,,l > I S,,l, with S,, and S,, both negative. This 
correlates with the anisotropy in both the shape and the electric polarizability of 
anthracene and hence is consistent with either steric or dispersion forces being 
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0.3 I I 

0.2 

O S 1  t 
, ._. . . . . . . . . . . .  , . . .  ,.." 
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Figure 4. The variation of the biaxiality (&* - S,) with the reduced temperature, TITNl, for 
anthracene-d,, dissolved in HAB (O), E9 ( x), PCH 7 (+), ZLI 1167 (A). I 4,3 ( a )  and 
Phase 5 (01.'" 

0.3 
I I I 
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0.6/ \ 

I I I 
u.0 0.2 0 . 4  0.6 
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Figure 5. The variation of the biaxility (Sxx - S,) with the major order parameter S,, for 
anthracene-d,, in HAB (O), E9 ( x ), PCH 7 (+), ZLI 1 167 (A), 1 4,3 (.) and Phase 5 (0). 
The continuous curves are those calculated for the 2 values shown. 

important ordering mechanisms for anthracene. There is no obvious correlation of the 
magnitudes of (Sxx - S,,,,) at a given T/T,, with the structure of the solvent. The data 
in figures 3 and 4 are combined in figure 5 to give the variation of the biaxiality 
(Sxx - S,,,,) with the major order parameter, Szz. This presentation of the data shows 
more clearly the influence of the solvent on the deviation from cylindrical symmetry of 
the potential of mean torque for the solute. The continuous curves shown in figure 5 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
6
:
4
5
 
2
6
 
J
a
n
u
a
r
y
 
2
0
1
1
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were calculated from equations (3), (6), (lo), (11) and (12) using the values of A 
indicated beside the curves. 

In general, the biaxiality parameter ,I will be independent of the nature of the 
solvent provided that a single interaction dominates U(w) and that the averaged 
coefficients iiZmn can be factorized according to 

CZmn = A I2 X'**")$;.n), I (18) 

where XI and A', are second-rank properties associated with the solvent and solute 
respectively. This factorization is exact for dispersion forces, as noted earlier, and so 
the data in figure 5 clearly show that this interaction cannot be the sole contribution 
to the potential of mean torque for anthracene in all the solvents studied here. The 
same conclusion can be reached for the electrostatic interaction between permanent 
quadrupole moments on solvent and solute molecules; this has been proposed by 
Patey et al. [I61 as the dominant contribution to the potential of mean torque for some 
small solute molecules in various liquid-crystalline solvents. It can be shown [ 171 that 
such an interaction does yield coefficients iiZmn which obey equation (IS), although we 
note that the contribution of electrostatic forces to U(w) vanish within the normal 
approximations used by Emsley et al. [9] to develop the potential of mean torque for 
biaxial solutes. The factorization of iiZmn given by equation (18) is not necessarily valid 
for repulsion forces, although such a division into solute and solvent contributions 
has been suggested by van der Meer and Vertogen [18]. It is not possible, therefore, 
to exclude with any certainty that repulsion forces dominate the potential of mean 
torque for anthracene in the solvents we have studied. It is more probable, however, 
that the solvent dependence of i shown in figure 5 is a consequence of a contribution 
to U(o) of more than one kind of force. 

This conclusion contrasts with that reached by Sackmann et al. [3] who included 
anthracene in their study of solute alignment in mixtures of cholesteryl esters; they 
concluded that the solute ordering was determined by the dispersion interaction 
alone. These authors predicted the order parameter SZz for a number of solutes by 
assuming the potential of mean torque to result from the dispersion interaction. They 
used the data for anthracene as a means of calibrating the strength of the interaction 
and found good agreement between theory and experiment for several other aromatic 
hydrocarbons. For anthracene they measured S,, to be 0.33 and S,, - S,, as 0.13 at 
30°C. These two values can be used to determine an effective biaxiality parameter, AeR. 
To do this we combine equation (3) with equations (6), (10) and (11) to give 

and 

S,, - S,, = $ 4 ~  Z-I d&(P) 1, { bd,2,(P)} exp { a&,(P)} sin P dP, (20) 
J O  

where dio(P) and d&(/?) are reduced Wigner rotation matrices and P and y are Euler 
angles defining the director in the molecular principal axis system. The Z,, {hd&(P)} are 
nth order modified Bessel functions, and a and b are the scaled parameters 

a = E2,01kT, (21) 

b = EZ,Z/kT, (22) 
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hence 1 = b/2a. Inverting equations (19) and (20) gives a and b, and hence Lea from 
a pair of order parameters at a given temperature. For the values of S,, and S,, - Spy 
determined by Sackmann et al. [3] for anthracene we obtain A,, to be 0.35. If Aefl results 
from the dispersion forces and hence is determined by the polarizability of the solute 
through [ 1 I], 

where a,,, ayy and a,, are the principal components of the electric polarizability tensor 
of anthracene, and E = (a,, + a, + az,)/3. 

The polarizabilities have been determined from measurements of the Kerr effect 
[19]; they are 

axx = 26*0A3, ayy = 12.0A3, a,, = 40.2A3, 

and hence 1 is predicted to be 0.41, in the middle of the range of values found for I, ,  
for anthracene in the solvents used in this work, and significantly greater than the 
value of Aeff calculated from the data of Sackmann et al. [3]. This confirms our previous 
conclusion that anisotropic dispersion forces cannot make the dominant contribution 
to the potential of mean torque for anthracene dissolved in a variety of nematics. 

There are differences in the relative behaviour of the biaxiality (S,, - Syy) found 
for anthracene and for 1,4-dinitrobenzene. Thus for the two solvents HAB and Phase 
5, the only solvents common to both studies, the AeK values have relative magnitudes 
,Ieff (Phase 5) < ,Ief HAB for anthracene but this order is reversed and the differ- 
ence is larger for 1,4-dinitrobenzene. We do not have a simple explanation for this 
variation in ,IeB but it does illustrate the sensitivity of this parameter to the nature of 
solute-solvent interactions. 

A closer comparison of the experimental data shown in figure 5 with theoretical 
curves corresponding to fixed values of I shows that the general shape of the experi- 
mental and theoretical curves are in good agreement, although there are significant 
deviations between experiment and theory, Thus, the maximum in (S,, - S,,,,) occurs 
at a higher value of S,, for the experimental compared with the theoretical curves. To 
quantify this discrepancy we show in figure 6 values of ,Ieff for anthracene which have 
been obtained from pairs of values of Szz and S,, - Syy at each temperature. 

The increase of ,Ieff with decreasing T/TN, for all the solvents studied parallels the 
behaviour found for 1,4-dinitrobenzene and suggests a common origin for the 
phenomenon. Thus, the potential of mean torque U(o) must be more complex than 
we have assumed. The inclusion of only second-rank terms in equation (6) may be an 
inadequate representation of the orientational dependence of U(w), and in addition 
the linear dependence of the interaction tensor components E ~ , ~  on the solvent order 
parameters, c2,,, of equations (7) and (8) may be a bad approximation. 

We now explore each of these possibilities. Our data does not indicate a depen- 
dence of Aefl on the flexibility or the biaxial character of the solvent molecules and so 
we shall retain the approximation that the solvent molecules can be regarded as being 
rigid and cylindrically symmetric. 

We consider first the consequences of expanding E ~ , ~  and E ~ , ~  as power series in C2,0 
as proposed for pure nematics [20, 211 

- E2,O = 
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0.6 

0.0 
0.7 0.8 0.9 1.0 

T/ TN I 
Figure 6. The dependence of leR on the reduced temperature, TITN,, for anthracene-d,, in 

HAB (01, E9 ( x),  PCH7 (+), ZLI 1167 (A), I 4,3 (.) and Phase 5 (0). 

and 

~ 2 , 2  = -2{bIC2,0 + b2C& + . . .}. (25)  

1 = Ao(l + d, C2,0 + d2C;,, + . . .) (26)  

Thus A may now be written as 

where a,, b,,  d,  are temperature independent coefficients. We do not have a direct 
measure of C2,, for the solvent in any of the mixtures which we have studied. However, 
we expect a, 6 a,  and b, 6 b, so that from equations (21), (22) ,  (24) and ( 2 5 )  we see 
that c2,, is proportional to both akT and bkT. In figure 7, therefore, we show the 
dependence of AeK on akT, and we note that for all the mixtures studied there is a 
significant departure from linearity. We have fitted the experimental points by the 
method of least squares to a quadratic dependence of ,IeK on akT and extrapolated the 
curves, as shown in figure 7, to give the values of do listed in table 3. Note that we have 
excluded the data for the nematic phase of HAB as solvent from figure 7 since these 
are practically superimposable on those obtained for E9, and the data for the smectic 
phase of HAB has too small a range for a fit to a quadratic to be meaningful. The 

Table 3. Values of Lo, A and B obtained by fitting jleR to the 
equation leR = 1, + A(akT)  + B(akT)'. 

Solvent 1 0  A B 

ZLI 1 167 0.3205 f 0.0010 0.3487 f 0.0006 -0.0800 f 0.0002 
PCH 7 0.2977 f 0.0006 0.3432 f 0.0004 -0.0792 f 0.0001 
14, 3 0.2336 f 0.0007 0.2689 f 0.0004 -0'0703 f 0.0001 
HAB 0.180 0.006 0.2265 f 0.0047 -0.0196 f 0.0017 
(nematic phase only) 
E9 0-1758 f 0.0003 0.2695 f 0.0002 -0.0527 f 0-00005 
Phase 5 0.1278 f 0.0007 0.3394 f 0.0006 -0-1658 f 0.0003 
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Figure 7. The variation of ACE with akT for anthracene-& dissolved in HAB (O), E9 ( x) ,  
PCH7 (+), ZLI 1167 (A), I 4,3 ( - )  and Phase 5 (0). 

values of lo for the different mixtures still have very different magnitudes, as do the 
values of ,IeE obtained from the order parameters of anthracene close to TN, for the 
nematogenic mixture, and hence the strong solvent dependence of the biaxial ordering 
of anthracene does not vanish when we allow for a possible dependence of 1 on the 
solvent order. 

The variation of I,, with temperature could also result because the expansion of 
the potential of mean torque in equation ( 6 )  contains only second rank terms. More 
generally, for a solute at low concentration 

where L for a phase with D,, symmetry must be even and m,n take values L, 
L - I ,  . . . , - L + I ,  - L [9]. Equation (27) is appropriate only when the solvent and 
solute molecules are rigid, and although we may always restrict our choice of solute 
to such a case the solvent molecules are almost invariably non-rigid and lacking in 
symmetry. However, to simplify the form of U(o) we shall assume that the solvent 
molecules are both rigid and cylindrically symmetric; this restricts m to being zero. 
Anthracene has DZh symmetry and using the molecular symmetry axes to define the 
frame of reference for the solute restricts n to being even and CLOn to equal iiLO-,,,  thus 

even even 

Equation (28) reduces to equation (6) (using equations (10) and (11) to express the 
interaction coefficients in terms of the solvent order parameters) when L is restricted 
to 2. 

To investigate the influence of the fourth-rank terms we require the order 
parameters c2,0 and c44,0, but as these are not available experimentally for the solvents 
which we have studied we shall adopt a purely theoretical approach to determine their 
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magnitude. To do this we assume that for the solvent molecules the potential of mean 
torque U(B) is of the Maier-Saupe form, that is of second rank, and hence 

U(B> = - 4 0  G . 0  C2.0(B), (29) 
where B is now the angle between the assumed symmetry axis of the solvent molecules 
and the director. This potential is chosen because of its simplicity which results in the 
interaction parameter ii,, being directly related to the nematic-isotropic transition 
temperature [ 12, 221 

ii,, = kTN,/0.2202. 

Despite the simplicity of U(B) it leads to predictions of the orientational order which 
are reasonably close to experimental results [21]. The solvent order parameters are 
given by 

(30) 

G o  = z-I j; cL,o(B>exP(- U(B)IkT)sinBdB, 

Z = j: exp { - U(B)/kT} sin B dB. 

(31) 

where the orientational partition function for the solvent is 

(32) 

Even with these simplifying assumptions concerning the orientational order of the 
solvent molecules the introduction of fourth-rank terms into the potential of mean 
torque for a molecule with the symmetry of anthracene requires three extra inter- 
action parameters, iim, ii,,, and ii,. We expect these to have the relative magnitudes 
ii,, > ii402 > iia4 and so to reduce the number of variables we retain only the largest 
term in order to produce a potential of mean torque with which to explore the effect 
of introducing some fourth-rank character. We write this potential as 

with 
U ( ~ Y )  = -kT{ad&(B) + bd&(B)cos2y + cdA(B)}, (33) 

c = -iiWC4,0/kT. (34) 
However we note that there is still only one term in the potential, namely bd&(/3) cos 2y, 
which will produce a non-zero biaxiality in the solute ordering. The fourth-rank term 
will change the variation of (Sxx - S,,) with S,, by an amount which depends on the 
magnitude of 6 (= EW/iiz,). To explore the effect that inclusion of the dominant 
fourth-rank term in U@y) has on the dependence of solute biaxiality on the major 
order parameter requires that we have a reasonable estimate of 6. Recent computer 
simulation studies [23] suggest that c/a is approximately - 0.1 for a single component 
model nematogen comprising axially symmetric, rigid particles interacting through a 
continuous potential. Since C4,,/CZ,, calculated from the Maier-Saupe potential is 0.3 
to 0.5 for the range of reduced temperatures used in our experiments, this suggests 
values for 6 in the region of - 0.2 to - 0.4. We have investigated the effect of varying 
6 over the range 0-4 to - 0.4, the positive values being included to explore more fully 
the influence of 6 on the order parameters. The value of 1 we take to be 0.3, which 
is close to that found for Aef for anthracene in Phase 5 .  It remains to obtain an estimate 
for ii,, in order to calculate solute order parameters using the potential of mean 
torque given by equation (33). For fixed values of A and 6 the value of ii,,, deter- 
mines s:', the value of s,, at the nematic-isotropic transition temperature. If the 
solute-solvent interactions, which are dominated by ii,, , are comparable to the 
solvent-solvent interactions, whose strength is dictated by ii,,, then ii2,/iiz0 would be 
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Figure 8. The calculated variation of (Sxx - S,) with S,, obtained with the inclusion of the 
dominant fourth-rank term in the potential of mean torque, the strength of this new term 
is proportional to 6 (see text). The biaxiality parameter /z is held constant at 0.3 and 
f i 2 0 0 / f i z o  at 0.5. 

close to unity, In consequence, SE' for both solute and solvent would be approximately 
equal, and in the Maier-Saupe theory would have the value of 0.429. Figure 3 shows 
that anthracene dissolved in all solvents has SE' close to 0.2, which implies that ii200/ii20 
should be significantly less than unity, and so we have chosen 0.5 as a reasonable 
value; from equation (30) this serves to fix ii,oo. Figure 8 shows the predicted depen- 
dence of (Sxx - Syy)  on S,, for ii200/ii20 equal to 0.5, A equal to 0.3 and values for 6 of 
0.4,0.2,0.0, - 0.2 and - 0.4. A positive 6 increases the tendency of the solute to align 
with the director along z relative to x or y and shifts the maximum in the curve 
towards smaller Sz2. A negative 6 has precisely the opposite effect and, as seen in figure 
8 for 6 = - 0.4, this can result in a dramatic change in the shape of the curve with 
the predicted S,, reaching a maximum value. However, when 6 is negative and not 
greater in magnitude than 0.4, the calculated shape of the (Sxx - S, , )  versus S,, curve 
is closer to those observed experimentally. This is shown in figure 9 where we compare 
calculations of (Srv - S,,,) and SZ2 obtained with 6 = 0 and - 0.4 with experimental 
values of anthracene in Phase 5.  The value of I = 0.3 combined with 6 = 0 gives a 
close fit to the experimental data for anthracene in Phase 5 at the lowest reduced 
temperature, whereas with 6 = -0.4 a better fit to the data at  this temperature is 
obtained by reducing 1 to 0.273. The inclusion of a negative 6 clearly improves the 
agreement between theory and experiment, and could explain, in part, the tempera- 
ture dependence of the A,, values obtained directly from experimental data and which 
refer to a potential of mean torque with 6 = 0. To demonstrate that a negative 6 will 
produce a AeR which varies with reduced temperature we show in figure 10 values of 
ACE obtained from points on the theoretical curves shown in figure 9, and we compare 
these with the values obtained for anthracene in Phase 5. Making 6 more negative will 
increase the rate of change of I e ,  with reduced temperature, but it will also have the 
the effect of reducing the maximum value which S,, can achieve (see figure 8). We have 
not observed, for any of the solvents studied, the attainment of a maximum value of 
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0.2  

S X X - S Y Y  

0.1 

0.0 
0 

s z z  
Figure 9. The calculated values of the biaxiality (Sxx - S,,,,) and the major order parameter, 

S,,, obtained with 1 = 0.3 and S = 0 (---) and with 3, = 0.273 and S = -0.4 
(-). The experimental values for anthracene-d,, in Phase 5 (0) are shown for 
comparison. 

0.4 
1 

X e f f  

0.2 I I 
0.6 0.8 1.0 

T/TNl 
Figure 10. Jeff derived from the calculated values of (Sxx - SYy) and S,  shown in figure 9 and 

obtained with values of the relative fourth-rank interaction parameter 6 of zero (---) 
and - 0.4 (-); AeR determined from the experimental data for anthracene-d,, in Phase 
5 (0) are shown for comparison. 

S,, which then remains almost constant whilst (Sxx - S,,) continues to increase. The 
order parameters S;, were calculated for a similar range to those observed experiment- 
ally, as shown in figure 9. However, in figure 10 we see that these calculated values 
of S,, correspond to a very much wider temperature range than that for the exper- 
imental data. This results from the well-known discrepancy between the temperature 
dependence of the order parameter S,, predicted by the Maier-Saupe potential and 
that observed experimentally. This discrepancy is thought to originate mainly from 
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the neglect of the effect on ii,, of changes in density with temperature for systems 
under constant pressure [24]. Figure 10, therefore, is useful only in showing that 
inclusion of the fourth-rank term does lead to the correct qualitative temperature 
variation of I,, , that is increasing as TITNI decreases. 

Inclusion of all three fourth-rank terms into the potential of mean torque for the 
solute could produce still larger changes in the shape of the (SIX - S,,) versus Sz, 
curves, but at the expense of introducing four adjustable parameters into the theory. 
Before attempting such calculations it would be prudent to consider other factors 
which may contribute to the observed temperature dependent values of Ie,. In 
particular we note that the data for anthracene were obtained from samples at 
constant pressure, and hence include the effect of changing density with temperature, 
whilst the potential of mean torque for the solute refers to constant density. 

The coefficients iiZmn in the potential of mean torque are expected to depend on the 
average separations of solute and solvent molecules and therefore to be dependent on 
density [22]. An investigation into the magnitude of the density dependence of I, ,  for 
anthracene-d,, dissolved in a nematic solvent is currently in progress using the 
temperature and pressure dependence of the deuteron quadrupolar splittings. 
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